
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

1 Instructor: Daniel Llamocca

Notes - Unit 6

DYNAMIC PARTIAL RECONFIGURATION

INTRODUCTION TO SELF-RECONFIGURABLE SYSTEMS

MOTIVATION
▪ Digital systems can be characterized by a

series of properties (or objectives):

Energy, Performance, Accuracy, Hardware

footprint, Bandwidth, etc.

▪ Dynamic Reconfigurable Computing
Management: The ability to control the
aforementioned properties at run-time. We
can deliver a dynamically self-adaptive
system (by dynamic allocation of resources
and dynamic frequency control) that
satisfies time-varying simultaneous
requirements.

▪ Dynamic Reconfigurable Computing Management allows us to control digital system properties at run-time:

▪ The system can then carry out independent tasks in time. For example:

✓ Task 1: A video processing system is asked to deliver real time performance at 30 frames per second on limited battery
life that will also need to operate for at least 10 hours.

✓ Task 2: The video processing system is asked to deliver performance at 100 frames per second at some minimum level
of accuracy.

Digital
signal/image/video

DIGITAL
SYSTEM

Digital
signal/image/video

or features

Control

Energy
Performance

Precision
Resources

...

... Parameters

IN OUT

t1 t2 t3 time...

DIGITAL
SYSTEM

Set 1 of
Parameters

Performance  30 fps
Energy available for

at least 10 hours

Performance  100 fps

Accuracy  60 dB

DIGITAL
SYSTEM

Set 2 of
Parameters

TASK 1 TASK 2

Multi-variable Space:

Energy-Performance-Accuracy

Time-Varying
constraints

USER INPUTS

Module 1

n sets of:

bitstreams + frequency

Objectives1

Estimated
objectives

HW realizations and estimated objectives

Objectives2

Objectives3

Objectives4

Objectivesn

..
.

..
.

Module 2

Module 3

Module 4

Module n

M
E

M
O

R
Y

Realization selector

STATIC HW

components

DYNAMIC HW

components

HW
Realizations

Multiple
Objectives

Measurements

DATA
INPUTS OUTPUTS

Parameters

CONTROL
ALGORITHM

HW
Realizations

DYNAMIC DIGITAL SYSTEM

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

2 Instructor: Daniel Llamocca

DRP IMPLEMENTATION: RECONFIGURATION CONTROLLER, GENERATION OF PARTIAL BITSTREAMS

DYNAMIC PARTIAL RECONFIGURATION (DPR)
▪ Dynamic Partial Reconfiguration (DPR) enables the run-time allocation and de-allocation of hardware resources by modifying

or switching off portions of the FPGA (or Programmable Logic inside the Zynq-7000) while the rest remains intact, continuing
its operation.

▪ The operating design is modified by loading a partial bitstream configuration file. After a full bitstream configuration file

configures the FPGA (Full Reconfiguration), partial bit files can be downloaded to modify reconfigurable regions in the FPGA
without compromising the integrity of the applications running on those parts of the device that are not being reconfigured
(this is called the static region). The figure illustrates the idea where the Block A (user-defined reconfigurable region) can
be modified by any of the partial bit files (A1.bit, A2.bit, A3.bit, or A4.bit). The static region remains functioning and it is
completely unaffected by the loading of a partial bit file. This is akin to multiplexing FPGA resources over time.

▪ This technology can dramatically extend the capabilities of FPGAs. In addition to potentially reducing size, weight, power,

and cost, Dynamic Partial Reconfiguration enables new types of FPGA designs that provide efficiencies not attainable with
conventional design techniques. The main FPGA vendors, ALTERA and Xilinx provide commercial support for this technology.

▪ Xilinx devices: The Reconfigurable Region can be dynamically reconfigured by writing on:
✓ The Processor Configuration Access Port (PCAP) inside the PS. this is the preferred method for Zynq devices.
✓ The Internal Configuration access port (ICAP) inside the PL. Here, an AXI interface is commonly built around the ICAP

(e.g.: Xilinx Partial Reconfiguration Controller, custom-built controller) in order to easily write partial bitstreams to the
ICAP; this method is less favored for Zynq devices, it can be useful in FPGAs with soft-core processors.

DYNAMIC FREQUENCY CONTROL
▪ The mixed-mode clock managers (MMCM) inside the 7-Series

FPGAs (Artix-7, Virtex-7, Zynq-7000 PL) provide a wide range
of clock management features. (more info on UG472: 7
Series FPGAs Clocking Resources - User Guide)

▪ The Dynamic Reconfiguration Port (DRP) can adjust a clock
frequency and phase at run-time without loading a new
bitstream. In the figure, clkfx is connected to one of several
output clocks (clkout0). The frequency of clkfx is controlled
by M, D, and O0. (more info on XAPP888: MMCM and PLL
Dynamic Reconfiguration)

▪ You can instantiate the Xilinx primitives MMCME2_ADV and

BUFG (In Vivado: Project Manager  Language Templates

 VHDL  Artix-7  Clock Components). M and D are
design parameters of MMCME2_ADV. The value of O0 can be

modified at run-time. This is how we can dynamically modify the frequency of clkfx.

A4.bit

A3.bit

Reconfig
Block "A"

FPGA (or PL in Zynq)

Static Region
A2.bit

A1.bit

clkout0
clkout1

clkin1

rst

clkfbin clkfbout

D
R

P

MMCME2_ADV
A

X
I

s
la

v
e

in
te

rf
a
c
e

BUFG

BUFG

ref. clock

FREQ & PR CTRL - AXI SLAVE
c
lk

fx

A
X

I
B

u
s

O0 is controlled
at run-time

P
R

_
d

o
n

e

...

dclk
di[15..0]
dwe
den
daddr[6..0]
do[15..0]
drdy

S_AXI_ACLK

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

3 Instructor: Daniel Llamocca

Technology that enables reconfiguration (full/partial) of FPGAs
▪ Xilinx and ALTERA use a memory-based paradigm for

computation of Boolean functions as well as for the
realization of interconnections. Among the programmable
technologies available, we can list SRAM, EEPROM, and
Flash-based. SRAM devices, the dominant technology for
FPGAs, are based on static CMOS memory technology,
and are re-programmable and in-system programmable.

▪ In a SRAM-based FPGA, the states of the logic blocks, I/O
blocks, and interconnections are controlled by the output
of the SRAM cells. The basic SRAM configuration is
constructed from two cross-coupled inverters and uses a
standard CMOS processor. A new connection or function
is implemented by a change on the SRAM cell values.
Moreover, the device can be rapidly reconfigured in-
circuit (when mounted on the circuit board with the other components) and on-the-fly (while the device is operating).

▪ A major disadvantage of SRAM programming technology is its large area. It takes at least five transistors to implement a
SRAM cell, plus at least one transistor to serve as a programmable switch. Furthermore, the device is volatile, i.e., the
configuration of the device stored in the SRAM cells is lost if the power is cut off. Thus, external storage or non-volatile
devices such as EEPROMs, Flash devices are required to store the configuration and load it into the FPGA at power on.

IMPLEMENTATION DETAILS

▪ Reconfigurable Partition (RP). Region in the FPGA fabric (or PL fabric) that can be modified at run-time. It used to be called

Partial Reconfigurable Region (PRR). There can be several RPs in a design.

▪ The figure depicts an embedded All-Programmable SoC system that supports Dynamic Partial Reconfiguration (DPR) and

Dynamic Frequency Control (DFC). The system contains one AXI custom-built peripheral, which contains a Reconfigurable
Partition (RP).

▪ In general, we can have several AXI custom-built peripherals, where each peripheral can have its own Reconfigurable

Partition (RP). Moreover, within each peripheral, there can be several RPs.

▪ The following figure depicts a generic dynamically reconfigurable embedded system where we can reconfigure using the

ICAP. Also, many peripherals (memory controller, DMA controller, Ethernet, SD controller) are part of the FPGA fabric. Here,
we would have to instantiate every peripheral into the FPGA fabric. The microprocessor (uP) can be hard-wired (ARM,
PowerPC) or soft-core (MicroBlaze).

uP

SD
Controll

memory
Ethernet

MAC

AXI Peripheral

RM

RP

IC
A

P
p
o
rt

'n' bitstreams
in memory

DPRDMA
core

M S

ICAP
core

frequency
& PR ctrl iFIFO

in
te

rf
a
c
e

SD
card

oFIFO

clkfx

PR_done

M
o
d
u
le

 1

M
o
d
u
le

 2

M
o
d
u
le

 n

...
n m

n ≤ m

Module 1

'n' unique
bitstreams

freq.

f1

f2

f2

f3

f1

Module 2

Module 1

Module 1

Module n

..
.

..
.

E
X

T
E

R
N

A
L

c
o

n
s

tr
a
in

ts

*RP: Reconfigurable Partition

Hardware Configuration 1

Hardware Configuration 2

Hardware Configuration 3

Hardware Configuration 4

Hardware Configuration m

Processor Bus

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

4 Instructor: Daniel Llamocca

▪ Zynq-7000 devices contain a PS unit that includes the ARM as well as many peripherals (including the PCAP Interface that
has a dedicated DMA path). This is much simpler to handle as the designer only requires to deal with the software drivers

(no need to instantiate the peripherals):

▪ The AXI Peripheral contains the proper interface to the AXI bus. In addition there is an interface to the iFIFO and oFIFO.

This interface is usually outside the Reconfigurable Partition (RP), but in general it can be inside it.
▪ Each hardware configuration is represented by a partial bitstream file and a frequency of operation. Every single hardware

configuration has to be pre-computed prior to final system implementation.

▪ A Dynamic Manager (software routine running on the ARM inside the PS) provides input data, retrieves outputs from the

AXI Peripherals, and deals with constraints (automatically generated or external) and interrupts. More importantly, it is in
charge of swapping hardware configurations based on a particular set of rules.

DPR issues
▪ For proper DPR operation, we need to address two issues that arise due to DPR (especially when the interface to the FIFOs

is inside the RP):
✓ The RP outputs toggle during DPR and they might cause erratic behavior if the PRR outputs are directly connected to

‘sensitive’ signals (e.g.: AXI ready/valid signals, FIFO write enable). Thus, they need to be disabled during Partial
Reconfiguration (they are usually AND’ed with 0), or we reset the

✓ The RP flip flops are not automatically reset after DPR (unlike in full reconfiguration). Depending on the circuitry, this is

not usually an issue; however, in most cases we must reset all the flip flops inside the Partial Reconfigurable Region after
Partial Reconfiguration. One way to do it is by using a PR_done signal to be asserted (via software) after the DPR

process is completed.

TIME AND MEMORY OVERHEAD
▪ Reconfiguration Time Overhead: This depends on the bitstream size, the design of the AXI interface design around the ICAP

core, and the speed with which we can move data from memory to the ICAP core. Depending on the application, this
overhead can be negligible or significant (reconfiguration speeds can range from KB/s to about 400 MB/s for a 100 MHz
ICAP clock). In the case of the PCAP, the speed is more or less constant (~128 MB/s for a Zynq-700 device in the ZYBO
Board); this high speed is achieved due to the use (by default) of DMA.

▪ Memory overhead: The partial bitstream files are stored in memory. Depending on the application, the number of

combinations can range from the MBs to the GBs and it can pose a significant challenge to the system design.

PLPS

A
X

I
In

te
rc

o
n

n
e

c
t

ARM

memory

AXI Peripherals

RM

iFIFO

in
te

rf
a
c
e

SD
card

oFIFO

S

USB /UART/

Ethernet

DevC

PCAP Interface

APU

Reconfigurable

Partition (RP)Module 1

Module 2

..
.

Module m

Interrupts

In
te

rr
up

ts

DYNAMIC MANAGER
Generates Hardware configuration BRi

and loads it into the RM

Module i

BR i, 1 ≤ i ≤ m

B: User input

AXI Peripheral

A
:
in

p
u
t
d
a
ta

C
:
o
u
tp

u
t
d
a
ta

D
P
R

IP CORE...

Interrupts

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

5 Instructor: Daniel Llamocca

GENERAL APPROACH FOR SELF-RECONFIGURABLE SYSTEMS

▪ Definition of objective functions: Energy, Power, Performance, Accuracy, bandwidth.
▪ Definition of the Dynamic Regions (PRRs): This depends on the application. The more PRRs, the more complex the

system becomes.
▪ Development and parameterization of high-performance hardware architectures: Here, we should explore

techniques that optimize the amount of computational resources, exploit parallelism and pipelining.
▪ Design Space Exploration of the multi-objective space: Parameterization allows us to quickly generate a large set of

different hardware profiles by varying the design parameters. This helps to explore trade-offs among design parameters and
the objectives.

▪ (optional) Multi-objective optimization: Not all points in the design space are optimal; here, we get rid of sub-optimal
points.

▪ Dynamic management based on simultaneous multi-variable requirements: The system receives stimuli in the
form of multi-variable constraints and reconfigures itself via DPR and/or Dynamic Frequency Control to satisfy the multi-
variable constraints.

XILINX VIVADOTM SOFTWARE FLOW

These steps summarize processing a Partial Reconfigurable Design:

▪ Follow Bottom-Up Synthesis for your VHDL design: Place top-level

logic without the RPs on a specific folder, so that the top-level logic
is synthesized with black boxes for Partitions (this is the Static
Design). Have a separate folder for each Reconfigurable Partition
(RP) and for each Reconfigurable Module inside a RP. Also, include
the top level constraint file (.xdc). The figure shows an example:

▪ Synthesize the static and Reconfigurable Modules separately.
▪ Create physical constraints (Pblocks) to define the RPs.
▪ Set the HD.RECONFIGURABLE property on each RP.

▪ Implement a complete design (static and one Reconfigurable
Module per Reconfigurable Partition). This is a Configuration.

▪ Save a design checkpoint for the full routed design.
▪ Remove Reconfigurable Modules from this Configuration and save

a static-only design checkpoint.
▪ Lock the static placement and routing.
▪ Add new RMs to the static design and implement this new

configuration, saving a checkpoint for the full routed design.
▪ Repeat the previous step until all Reconfigurable Modules per each

RP are implemented as unique Configurations.
▪ Run a verification utility (pr_verify) on all Configurations.

▪ Create bitstreams (full and partial) for each Configuration (including
a Configuration with a black-box for each RPs).

Sources

hdl

top

F
O
L
D
E
R

S
T
R
U
C
T
U
R
E

E
X
A
M
P
L
E

RP1_RM1

RP1_RM2

RP1_RMp1

...

RP2_RM1

RP2_RM2

RP2_RMp2

...

RPn_RM1

RPn_RM2

RPn_RMpn

...
...

xdc

Entire design files with no RPs

Design files for RP1 RM1

Design files for RP1 RM2

Design files for RP1 RMp1

Design files for RP2 RM1

Design files for RP2 RM2

Design files for RP2 RMp2

Design files for RPn RM1

Design files for RPn RM2

Design files for RPn RMpn

Constraint file for the top design

RM 1

RM 2

RM 3

RM 4

RP 1

RP 2

RP n

...

Static Design

...
...

...

Partition
Pins

TOP

RP i

Variants for a Reconfigurable
Partition (RP)Reconfigurable

Partition (RP)

RM p

CONFIGURATION: The TOP design where each RP
is loaded with a particular RM

RECONFIGURABLE MODULE (RM): Variant for a
Reconfigurable Partition

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

6 Instructor: Daniel Llamocca

CASE EXAMPLE: SIMPLE LEDS (ONLY PL)

▪ The description (and code) of this circuit is available in Tutorial: Embedded System Design for Zynq SoC - Unit 6. It includes

one Reconfigurable Partition (RP).
▪ RP output toggling: The outputs are connected to LEDs, so this is nonissue.
▪ Clearing FFs inside the RP after DPR: Since is a visual application, this is not a problem. In any case, we can always

reset the RP manually (via the external 𝑟𝑒𝑠𝑒𝑡 input).

CASE EXAMPLE: PIXEL PROCESSOR (PS+PL)

▪ The VHDL code of this IP is available at Tutorial: Embedded System Design for Zynq SoC - Unit 7.

✓ Reconfigurable Partition (RP): It consists of 4 LUTs 8to8. We can create different hardware configurations by
modifying the parameter F (1..5). We fix NC=4, NI=NO=8.

✓ Static Region: It consists of all the hardware outside the 4 LUTs 8to8. The portion in light blue is the static portion in
the AXI4-Full Peripheral. Any extra hardware (e.g.: Processor System Reset, Processing System) is considered part of
the static region.

▪ RP output toggling: The FIFO structure avoids PR toggling as the PR outputs are only connected to the FIFO data input.
▪ Clearing FFs inside the RP after DPR: The RP does not have FFs, so we do not face this issue here.

reset

clock

zE

my_genpulse

FSM

leds(3)

leds(2)

Qud

E

leds(1)

leds(0)z

N ud

N=108/2

my_genpulse

E

z

top

count_rp

E

E

M15

M14

D18

G14

RECONFIGURABLE PARTITION (RP)

my2bit_udcount

R18

G15

L16 clk125

sw(0)

btn(0)

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

LUT
8-to-8

LUT
8-to-8

LUT
8-to-8

LUT
8-to-8

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

mem_wren
S_AXI_ARESETN

F

RP

http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html
http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

7 Instructor: Daniel Llamocca

CASE EXAMPLE: 2D DCT (PS+PL)

▪ The VHDL code of this IP is available at Tutorial: Embedded System Design for Zynq SoC - Unit 7.

✓ Reconfigurable Partition (RP): We can create different hardware configurations by varying the parameter N (DCT
Transform Size: 4, 8, 16). We fix B=8, NO=16, NH=16. If the Transform size changes, so do the input interface, the
output buffer, the output interface and the FSM @ CLKFX. This is why all these components are part of the RP (including
the 2D DCT IP).

✓ Static Region: It consists of all the hardware outside the RP. The portion in light blue is the static portion in the AXI4-
Full Peripheral (here, this is the circuits working @ CLKFX). Any extra hardware (e.g.: Processor System Reset, Processing
System) is considered part of the static region.

▪ RP output toggling: The signal 𝑜𝑤𝑟𝑒𝑛 can modify the oFIFO contents. So, we need to reset the FIFOs after DPR.

▪ Clearing FFs inside the RP after DPR: The RP includes FFs, including those of the FSM @ CLKFX. We need to clear all
the FFs after DPR, especially to place the FSM @CLK_FX into the initial state after DPR.

▪ 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡: This signal resets both the RP FFs and the FIFOs via a simple software command (we write the word 0xAA995577

onto address 101100). Make sure than when writing to the peripheral, we avoid the address 101100.
✓ 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡: This is the output of a flip flop. This signal is a pulse of

one clock cycle. Every time axi_awaddr (latched S_AXI_AWADDR)
and S_AXI_WDATA match what we want, we generate a pulse.

✓ Notice that once S_AXI_WDATA is captured by AXI, the latched
address axi_awaddr might increase its value by 4 (or changes). Or S_AXI_WDATA will not be the valid value anymore.
This usually makes sure that 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡 is only one pulse (and not a sequence of pulses generated in case that axi_awaddr

and S_AXI_WDATA hold their values). To be absolute sure, include the condition axi_wready=axi_wvalid=1 when
asserting 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡.

▪ Note that in Vivado 2016.2, we can use the RESET_AFTER_RECONFIGURATION property to reset all the flip flops inside the

PR (at the expense of extra constraints on the RP shape). However, this will not reset the FIFOs, as they are not part of the
RP. If we do not reset FIFO, the circuit might not work after DPR.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

2D DCT IP

E v

X

In
pu

t I
nt

er
fa

ce

rst

...

Output
Buffer

N
O

x
N

N

B
x
N

O
ut

pu
t I

nt
er

fa
ce

Y

irden

owren

32 32

N

S_AXI_ARESETN

PR_reset

RP

PR_reset_d
axi_aw_addr (5..2)=1011

S_AXI_WDATA = 0xAA995577
PR_reset

http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – Reconfigurable Computing Fall 2018

8 Instructor: Daniel Llamocca

▪ The original FSM @ S_AXI_ACLK was used for the pixel processor and the 2D DCT. This FSM can be used for any circuit that
uses the iFIFO/oFIFO structure (as mentioned in Notes – Unit 5). This circuit is shown below (on the left).

▪ However, if we want to carry out Dynamic Partial Reconfiguration, we need to reset both the FIFOs and the RP using the
signal 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡. To reset the FIFOs, we need to assert the signal ‘rst’ again. The new FSM @ S_AXI_ACLK account for this

and it is shown below (on the right).

▪ Note that you can use this circuit as a template to build any AXI4-Full Peripheral that supports DPR. The AXI4-Full Peripheral

should like 2D DCT, where the RP includes: input and output interface to FIFOs, FSM @ CLKFX (to interface to FIFOs and
the IP core), and the IP core (in this case the 2D DCT). These are the only components that we need to modify. The
components running @ S_AXI_ACLK do not need to be modified.
✓ Output buffer of the 2D DCT: This is considered part of Output Interface to oFIFO. In the figure, we chose to display it

independently.

0

1
iwren1

S1

oempty

ifull

mem_wren

orden1

S2

10

0
1

0

0

oempty

FSM at S_AXI_ACLK

S_AXI_ARESETN=0 (C0)

C=15
CC+1

fifo_fsm_rst 1

no

yes

rstAXI_ARESETN

fifo_fsm_rst

mem_rden

0
axi_rvalid

PR_reset

0

1

1

1

C0

0

1 iwren1

S1

oempty

ifull

mem_wren

orden1

S2

10

01

0

1

0

oempty

FSM at S_AXI_ACLK

S_AXI_ARESETN=0 (C0)

C=15
CC+1

fifo_fsm_rst 1

no

yes

rstAXI_ARESETN

fifo_fsm_rst

mem_rden

1

0
axi_rvalid

C0

